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SUMMARY

A new Galerkin ®nite element method for the solution of the Navier±Stokes equations in enclosures containing
internal parts which may be moving is presented. Dubbed the virtual ®nite element method, it is based upon
optimization techniques and belongs to the class of ®ctitious domain methods. Only one volumetric mesh
representing the enclosure without its internal parts needs to be generated. These are rather discretized using
control points on which kinematic constraints are enforced and introduced into the mathematical formulation by
means of Lagrange multipliers. Consequently, the meshing of the computational domain is much easier than with
classical ®nite element approaches.

First, the methodology will be presented in detail. It will then be validated in the case of the two-dimensional
Couette cylinder problem for which an analytical solution is available. Finally, the three-dimensional ¯uid ¯ow
inside a mechanically agitated vessel will be investigated. The accuracy of the numerical results will be assessed
through a comparison with experimental data and results obtained with a standard ®nite element method. # 1997
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1. INTRODUCTION

Computational ¯uid dynamics has proven over the years that it is a valuable asset in the prediction

and understanding of viscous ¯uid ¯ow phenomena. Nevertheless, reports on three-dimensional ¯uid

¯ow simulations are not so numerous despite the fact that many physical phenomena just cannot be

tackled adequately in two dimensions; this is quite the case for process engineering problems which

in general involve three-dimensional ¯ows in very complex geometries. Two factors come to mind

when trying to explain this lack of three-dimensional numerical investigations.

First, the solution of three-dimensional ¯uid ¯ow problems requires large amounts of both memory

and CPU time. These drawbacks can, however, be alleviated by selecting suitable numerical

techniques such as the preconditioned Uzawa algorithm2,3 and multigrid methods.4 As a result, the

solution of huge systems of equations (105±106) can today be performed on desktop workstations

with relative ease.
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Next, it is known to anyone who has ever dealt with three-dimensional simulations that the

meshing of the computational domain is in general cumbersome and time-consuming. To illustrate

this fact, we have displayed in Figure 1 the mesh of a helical ribbon mixer typical of those used in

polymerization reactors and fermenters. This mesh alone has necessitated many hours of work using

I-DEAS, the mesh generator from SDRC. Fortunately, for this kind of problem a steady solution can

be obtained if the computation is carried out using the impeller viewpoint.5 As a result, a single mesh

is required.

In the more general context of three-dimensional geometries containing arbitrarily shaped internal

parts or bodies, such as in the example above, a few interesting strategies can be found in the

literature, all of which aim at simplifying the mesh generation and the treatment of particular

problems.

First, Thompson et al.6 describe a method, based upon body-®tted co-ordinates, whereby an

automatic mesh generation can be achieved for regions of rather general shapes containing any

number of internal parts. Although originally designed for two-dimensional geometries, this method

has since been extended to the three-dimensional case7 and, because it may provide orthogonal or

quasi-orthogonal meshes, is mostly used in conjunction with the ®nite difference and ®nite volume

methods.

Also of interest is the work by Demirdzic and Peric,8 who developed moving mesh techniques in

which a single ®xed mesh spanning both the stationary and moving parts of a geometry is allowed to

move over time. Remeshing then becomes necessary when the grid gets too distorted.

To obviate the need for repetitive remeshings, Perng and Murthy9 used an idea put forward by

Rai10 for the simulation of ¯ow in mixing tanks. Called the sliding mesh technique, it makes use of

two complementary grids, one which is ®xed and which corresponds to the vessel itself, and another

which is allowed to move over time and which characterizes the impeller. As a consequence, the grid

Figure 1. Standard ®nite element mesh for helical ribbon mixer
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nodes do not coincide at the interface so that conservative interpolation is needed at each time step,

which, from a practical point of view, is rather delicate. Moreover, extension of this method to

complex cases such as those involving intermeshing impellers or multibody systems, for example, is

not trivial.

Another approach, often used in practice, consists of ignoring some internal parts of the geometry

when building the mesh. These are rather taken into account a posteriori as body forces in the

Navier±Stokes equations. Along this line, Pelletier and Schetz11 modelled the ¯uid ¯ow behind a

submarine propeller by mimicking the effect of the latter by equivalent forces inside a disc. These

were calculated as a function of radius-varying thrust and torque values using empiricisms. Another

example of such an approach is given by Hutchings et al.,12 who modelled the impact of baf¯es in a

mixing vessel upon ¯uid ¯ow. Once again the baf¯es were not meshed as such but rather accounted

for by introducing into the governing equations of change axisymmetric sinks of momentum at the

tank walls. Consequently, steady state solutions could be obtained easily. Unfortunately, their

technique proved valid only for simple geometries yielding negligible interactions between the

impeller and the baf¯es.

To carry out simulations for blood ¯ow in the heart, Peskin and McQueen13 devised a technique

called the immersed boundary method. In this method a ®xed mesh is used and the moving bodies

(the muscular heart walls) are approximated by a series of control points on which tension forces are

imposed pointwise and distributed in the neighbouring elements. Here again these forces are not

known a priori and are calculated using theoretical models. A variant of this technique, known as the

immersed interface method, has been recently developed by Leveque and Li.14

All the above approaches apply to very speci®c types of problems and are more or less limited in

scope. In other words, they all lack the generality and ¯exibility needed for widespread applicability.

In the early 1990s there have been a few reports on the use of ®ctitious domain methods for the

solution of partial differential equations15,16 in complex geometries. With these methods, domain

boundaries are imbedded in some auxiliary domain of simple shape. As a consequence, the meshing

tank is simpli®ed signi®cantly. However, this apparent simpli®cation is accompanied by some

complications such as the need to manage data structures pertaining to the actual geometry, an

essential operation which for three-dimensional problems is in general far from being trivial.

Recently a new class of ®ctitious domain methods has been developed. It is based on the explicit

use of Lagrange multipliers for the treatment of the internal parts of a geometry. These parts, which

may be moving, are not meshed as such. Instead they are taken into account by means of a set of

pointwise kinematic constraints that are coupled with the equations of change using a Lagrangian

method.17 Although similar to Peskin and McQueen's approach in as much as it is based upon control

points for the characterization of the internal parts, this type of ®ctitious domain method does not

resort to empirical forces. Velocity constraints are imposed on the control points through Lagrange

multipliers so that only kinematics of the internal parts must be known a priori. Sheehy et al.18

considered this approach for the numerical solution of an extrusion pro®le cooling problem by

modelling the cooling channels as two-dimensional ®ctitious domains. Glowinski et al.19 also

demonstrated the ef®ciency of this type of method for predicting the three-dimensional ¯uid ¯ow

around a sphere imbedded in a rectangular domain and for solving an optimal shape problem

involving two-dimensional Navier±Stokes ¯ows.20

The objective of this paper is to introduce a new three-dimensional ®ctitious domain method for

the solution of the Navier±Stokes equations in enclosures containing internal parts which may be

moving.

First, the methodology will be presented in detail. It will then be validated in the case of the two-

dimensional Couette cylinder problem for which an analytical solution is available. Finally, the

strong potential of this method, dubbed the virtual ®nite element method, will be shown by means of
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the solution of a typical industrial problem, that of the ¯uid ¯ow inside a helical ribbon mixer. The

accuracy of the numerical results will be assessed through a comparison with experimental data and

results obtained with a standard ®nite element method.

2. EQUATIONS OF CHANGE

The ¯ow of an incompressible ¯uid in a given geometry O with boundary G is governed by the

classical Navier±Stokes equations

r
@v

@t
� v � grad v

� �
� div t� grad p � f in O; �1�

div v � 0 in O; �2�
where v is the velocity, p is the pressure, f is a body force and r is the density. The stress tensor t is a

function of the velocity ®eld as expressed by a rheological equation of state

t � ÿ2Z�j_gj�_g; �3�
where _g � 1

2
�grad v� �grad v�T� is the rate-of-strain tensor. In this work the Newtonian model

Z�j_gj� � m �4�
and the power-law model

Z�j_gj� � mj_gjnÿ1 �5�
are considered. The consistency and shear-thinning indices m and n characterize the ¯uid at hand and

can be obtained by ®tting viscosity versus shear rate experimental data.

Finally, equations (1) and (2) must be provided with appropriate initial and boundary conditions for

mathematical well-posedness.

3. MATHEMATICAL FORMULATION

Let us consider for the moment the case of a steady state, inertialess Newtonian ¯uid ¯ow problem so

that equations (1) and (2) simplify to the Stokes equations

ÿmDv� grad p � f in O; �6�
div v � 0 in O: �7�

If we assume, without loss of generality, that Dirichlet boundary conditions in velocity are imposed

on G, then it is well known17 that for v 2 �H1
0 �O��3 the solution of this problem is equivalent to that of

the constrained minimization problem

inf
v2�H1

0
�O��3

div v�0

m
2

�
O
jgrad vj2 dOÿ

�
O

f ? v dO; �8�

which can be further transformed into the saddle-point problem

inf
v2�H1

0
�O��3

sup
p2L2�O�

L�v; p�; �9�
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where

L�v; p� � m
2

�
O
jgrad vj2 dOÿ

�
O

pdiv v dOÿ
�
O

f ? v dO �10�

is called a Lagrangian. In this last expression the pressure p is nothing but a Lagrange multiplier that

enforces the incompressibility constraint. Moreover, the Euler equations characterizing the solution

of this optimization problem constitute the variational form of the Stokes equations (6) and (7):

a�v;c� ÿ b�c; p� � �f;c� 8c 2 �H1
0 �O��3; �11�

b�v;f� � 0 8f 2 L2�O�; �12�

where

a�v;c� � m
�
O

grad v ? grad c dO; �13�

b�v;f� �
�
O
f div v dO �14�

and (�,�) stands for the standard scalar product in L2(O), i.e.

�u; v� �
�
O

uv dO 8u; v 2 L2�O�: �15�

A variant of the above method, often used for its ef®ciency, consists of adding to the standard

Lagrangian L(v, p) a penalty term to enhance the imposition of the incompressibility constraint. The

following so-called augmented Lagrangian results:

Lr�v; p� � L�v; p� � r

2

�
O
jdiv vj2 dO; �16�

where r is a penalty parameter.

One classical way of solving the saddle-point problem (10) is through the Uzawa algorithm.

0. Given p(0).

1. For n � 0; 1; 2; . . . until convergence:

1.1. Solve for v�n�1�

a�v�n�1�;c� � r�div v�n�1�; div c� � �f ;c� � b�c; p�n�� 8c 2 �H1
0 �O��3: �17�

1.2. Solve for p�n�1�

�p�n�1�;f� � �p�n�;f� � ab�v�n�1�;f� 8f 2 L2�O�: �18�
The Uzawa algorithm can therefore be viewed as a means whereby a constrained problem is split

up into a series of unconstrained problems. In practice, choosing a� r ensures convergence.

There exists no variational principle for the Navier±Stokes equations.21 Consequently, a weak

formulation for this problem cannot be obtained by minimizing a quadratic functional. Nevertheless,

the Uzawa algorithm can be used formally in such a case after adding to equation (17) the advective

and unsteady terms. In a similar fashion this equation can be modi®ed to allow for non-linear

viscosities. The reader is referred to the work by Tanguy et al.22 for more details on this topic.
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4. FICTITIOUS DOMAIN METHODS

Let us consider the steady laminar ¯ow of a viscous incompressible ¯uid inside a bounded domain O
containing a part O* (Figure 2). Such a ¯ow is governed by the Stokes equations to which Dirichlet

boundary conditions are added without loss of generality:

ÿmDv� grad p � f in OanO*; �19�
div v � 0 in OnO*; �20�

v � 0 on G; �21�
v � v* on G*: �22�

Quite clearly, mesh generation may be cumbersome if the computational domain OnO* is

complex. One way to handle such a complexity consists of looking upon the part O* as an obstacle to

the ¯ow by means of a kinematic constraint imposed on its boundary G*. By analogy with the

treatment of incompressibility, the Stokes problem (19)±(22) then becomes equivalent to the

optimization problem

inf
v2�H1

0
�O��3

vjG��v�

sup
p2L2�O�

Lr�v; p�; �23�

where Lr(v, p) is the augmented Lagrangian de®ned in (16). This is the essence of what are referred

to as ®ctitious domain methods.

As before, this problem can be transformed into a saddle-point problem by introducing a Lagrange

multiplier l 2 �L2�G*��3 to enforce the kinematic condition on G*:

inf
v2�H1

0
�O��3

sup
p2L2�O�

sup
l2�L2�G*��3

Lrs*�v; p; l�; �24�

where

Lrs*�v; p; l� � Lr�v; p� ÿ
�
G�
l ? �vÿ v*� dG� s

2

�
G*
jvÿ v*j2 dG �25�

is the corresponding augmented Lagrangian and s is a penalty parameter.

This saddle-point problem can readily be solved by the Uzawa algorithm.

0. Given p(0) and l(0).

1. For n � 0; 1; 2; . . . until convergence:

Figure 2. Two-dimensional schematic diagram representing bounded domain O and its internal part O*
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1.1. Solve for v�n�1�

a�v�n�1�;c� � r�div v�n�1�; div c� � s�v�n�1�;c�G*

� �f;c� � b�c; p�n�� � �l�n�;c�G* � s�v*;c�G* 8c 2 �H1
0 �O��3: �26�

1.2. Solve for p�n�1�

�p�n�1�;f� � �p�n�;f� � ab�v�n�1�;f� 8f 2 L2�O�: �27�
1.3. Solve for l�n�1�

�l�n�1�; x�G* � �l�n�; x�G* � b��v�n�1� ÿ v*�; x�G* 8x 2 �L2�G*��3: �28�
In equations (26) and (28) the scalar product in L2(G*) is de®ned as

�l1; l2�G* �
�
G*

l1l2 dG: �29�

By analogy with the choice of a and r, we set b� s in practice. We will come back to the selection of

parameters r and s later.

The Euler equations characterizing the saddle-point problem (24) are given by

a�v;c� � �f;c� � b�c; p� � �l;c�G* 8c 2 �H1
0 �O��3; �30�

b�v;f� � 0 8f 2 L2�O�; �31�
��vÿ v*�; x�G* � 0 8x 2 �L2�G*��3 �32�

and constitute a mixed problem in v, p and l.

5. DISCRETIZATION

The discretization of equations (26)±(28) in the Uzawa algorithm is carried out using the Galerkin

®nite element method. Suitable approximation spaces must be selected for discrete variables vh, ph

and lh.

In this work, velocity and pressure are approximated by enriched tetrahedral elements P�1 ±P0

(Figure 3) de®ned on the whole domain O and characterized by ®nite-dimensional subspaces

Vh � fvh 2 �C0�O��3; vhjT 2 �P�1 �T ��3; 8T 2 thg; �33�
Qh � fqh 2 L2�O�; qhjT 2 P0�T �; 8T 2 thg; �34�

where th is a regular tetrahedrization of O. The ®nite element P�1 ±P0 is based on the classical linear

element P1±P0. Extra degrees of freedom are added at the middle of each face to satisfy the Brezzi±

Babuska condition in the case of the Stokes problem (6), (7).23

Figure 3. P�1 ±P0 element

3D FICTITIOUS DOMAIN METHOD 725

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 719±736 (1997)



The ®nite-dimensional subspace Lh � L2�G*� is related to the boundary G* of the ®ctitious domain

O*. If th* stands for a rectangular triangulation of G*, then a natural choice for Lh is

Lh � flh 2 �L2�G*��3; lhjT 2 �P0�T ��3; 8T 2 thg; �35�
so that each of the three components of the Lagrange multiplier lh is approximated by piecewise

constants.

At this stage one must realize that a stability condition which guarantees uniform convergence as

h! 0 is provided by an inf-sup condition which rules the selection of approximation spaces for the

primitive variables. Unfortunately, little is known about the ful®lment of this condition in the context

of ®ctitious domain methods, except for some indications given by Glowinski et al.24 They state that,

for the inf-sup condition to be satis®ed, it is necessary that the distance between two adjacent nodes

of th* be larger than the mesh size of th.

As clearly mentioned by Glowinski et al.,19 an important issue related to the ®ctitious domain

method lies in the ability to compute the boundary integrals appearing in equations (26) and (28). In

practice these integrals can be computed numerically using Gaussian quadrature. Although this is not

really a problem even for three-dimensional geometries, it requires that the velocity be interpolated at

each Gaussian node. To carry out such an interpolation, the corresponding ®nite element of th must

®rst be localized, which adds to the cost of the method. In this work we propose as an alternative a

variant which we refer to as the virtual ®nite element method.

Let us consider a set of points fxigNi�1, hereafter called control points, which discretize the ®ctitious

boundary G*. One possibility is then to enforce the kinematic constraint vjG* � v* pointwise:

v�xi� � v*�xi� 8i � 1; 2; . . . ;N : �36�
This way of imposing the velocity on G* in a strong fashion is reminiscent of collocation methods.

Constraints in (36) are equivalent, in the sense of distributions, to equation (32) if the components of

x are Dirac functions de®ned as

d�xÿ xi� � 1 if x � xi;
0 if x 6� xi:

�
�37�

Quite obviously this approach requires neither the computation of boundary integrals nor the

generation of a surface mesh th* for G*. The ®ctitious domain O* is delimited by a collection of

control points. In this work each component of the Lagrange multiplier l 2 �L2�G*��3 is approximated

using one constant per control point.

The matrix version of the Uzawa algorithm (26)±(28) follows.

0. Given P(0) and L(0).

1. For n � 0; 1; 2; . . . until convergence:

1.1. Solve for V�n�1�

�A� rBTB� sD�V�n�1� � Fÿ BTP�n� � EL�n� �G: �38�
1.2. Solve for P�n�1�

P�n�1� � P�n� � aBV�n�1�: �39�
1.3. Solve for L�n�1�

L�n�1� � L�n� � bHV�n�1�: �40�
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In these equations, V, P and L are vectors that represent the velocity, the pressure and the

Lagrange multiplier respectively. A stands for the diffusion matrix, B stands for the divergence

matrix and F accounts for the body force. As for D, E, G and H, they relate to the virtual ®nite

element method and their respective meanings can be readily deduced from equations (26)±(28).

In practice the set of control points fxigNi�1 can be obtained through a mesh generator or standard

techniques such as octree-based or random shooting methods.25

The virtual ®nite element method can be extended to unsteady problems involving moving parts.

The use of a time scheme allows the decomposition of such a problem into a series of steady state

problems. Control points are time-dependent so that their location must be updated at each time

iteration to account for the kinematics of the moving parts. This strategy has been used by the authors

for the simulation of the ¯ow inside a planetary mixer.26

The solution of the matrix systems (38)±(40) can be performed using either direct or iterative

solvers. In the context of three-dimensional ¯ow simulations the advantages of the latter methods are

obvious in terms of both CPU time and memory requirements.27

The development of fast and reliable solvers to be used with the Uzawa algorithm is not trivial. For

instance, it is well known that the convergence speed of the Uzawa algorithm increases with the value

of penalty parameters such as r and s. In other words, these penalty terms originating from the

augmented Lagrangian can be viewed as a preconditioner. Unfortunately, it can be proven17 that the

convergence speed of conjugate gradient solvers when solving equation (38) decreases with

increasing values of these parameters. This property has led to the development of alternative

preconditioning techniques.2 Others have been successful in putting together an iterative solver based

on the augmented Lagrangian method. Called the incomplete Uzawa algorithm, it is based on an

optimal descent method for the solution of the linear system (38) and a conjugate gradient method for

updating the pressure, as opposed to the descent method (39) in the classical Uzawa algorithm.

Consequently, the parameter a is not ®xed, its value being optimized at each iteration. The reader is

referred to the article by Robichaud et al.3 for more details. In this work the incomplete Uzawa

algorithm was used for the computation of the velocity and pressure unknowns, while the Lagrange

multiplier L was updated by means of a classical Uzawa iteration.

0. Given P(0) and L(0).

1. For n � 0; 1; 2; . . . until convergence:

1.1. Get P�n�1� and V�n�1� using the incomplete Uzawa algorithm.

1.2. Solve for L�n�1�

L�n�1� � L�n� � bHV�n�1�: �41�
As for the values of parameters r, s and b, one may take r� 1 and b� s� 1. With such a choice the

linear system (38) remains well conditioned and the overall algorithm converges within a few

iterations.

One will have noticed that step 1.2 in the previous algorithm is nothing but a descent method for

the determination of the Lagrange multiplier L. Alternatively, we could have developed an algorithm

based on the conjugate gradient method as in Reference 24 and sought an ef®cient preconditioner as a

replacement for the penalty parameter s. Such a procedure was not deemed essential within the scope

of this paper.

6. VALIDATION OF THE VIRTUAL FINITE ELEMENT METHOD

In this section we assess the accuracy of the virtual ®nite element method and show its strong

potential for solving three-dimensional ¯uid ¯ow problems involving complex geometries. Two test
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problems will be considered: the two-dimensional Couette cylinder problem with its analytical

solution and the problem of three-dimensional ¯uid ¯ow in a helical ribbon mixer for which

experimental data are available.

Two-dimensional Couette cylinder problem

Let us consider the laminar ¯ow of a viscous incompressible ¯uid between two coaxial cylinders of

radii R and kR, the outer one of which is rotating with an angular velocity O0� 10 rev minÿ1 (Figure

4). For this problem we set R� 1 m and k� 0�5.

The analytical solution can be obtained by integrating the Stokes equations in cylindrical co-

ordinates:

vy � O0R
kR=r ÿ r=kR

kÿ 1=k
: �42�

This problem was solved with the virtual ®nite element method. The inner cylinder was considered

as a ®ctitious domain and its boundary was accounted for through sets of control points. Velocity and

pressure were discretized using the quadratic element P�2 ±P1 of Crouzeix and Raviart28 (Figure 5).

Each component of the Lagrange multiplier l was approximated with one constant per control point.

Moreover, a maximum of two control points, i.e. two kinematic constraints, were allowed in each

triangle of th. Such a limitation is necessary for stability reasons and guarantees that the problem

does not become overconstrained.

Simulations were carried out with four different meshes, the characteristics of which are

summarized in Table I. The mesh and control points corresponding to the case h� 0�025 are depicted

in Figure 6.

Velocity vectors and streamlines obtained for h� 0�025 are presented in Figure 7. These results

comply with the analytical solution. The velocities inside the inner cylinder are negligible and the

Figure 4. Couette cylinder problem
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streamlines are concentric circles. Moreover, the distance between adjacent streamlines gets smaller

when approaching the boundary of the outer cylinder, which means that the velocity gradients

become larger, as expected.

The behaviour of the solution in the vicinity of the ®ctitious boundary can be appreciated in Figure

8. It clearly shows the strong ability of the proposed ®ctitious domain method even when just a few

control points are used.

Finally, a graph of the velocity L1 (O)-error with respect to the mesh size is presented in Figure 9.

It shows that for this problem the virtual ®nite element method is stable and linear. It is, however, less

Figure 5. P�2 ±P1 element

Table I. Characteristics of simulations for Couette cylinder problem

Number of
Mesh size Number of Number of Number of velocity

(h) elements nodes control points equations

0�1 697 1458 71 2664
0�05 2834 5795 137 11086
0�033 6230 12649 201 24546
0�025 11221 22694 264 44384

Figure 6. Mesh and control points for Couette cylinder problem (h� 0�025)
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accurate, though easier to implement, than the ®ctitious domain method proposed by Glowinski et

al.24 For instance, choosing (35) in combination with Crouzeix±Raviart element would lead in all

likelihood to a third-order-accurate method. A comparison between the two methods will be the

subject of a forthcoming article.

Three-dimensional helical ribbon mixer problem

Let us consider the mixing system described in Reference 29 and shown in Figure 10. It consists of

a cylindrical vessel (8 l) provided with a helical ribbon (HR) impeller set in motion at a rotating

speed of 20 rev minÿ1. The vessel is ®lled with a highly non- linear power-law ¯uid with parameters

m� 3�82 Pa sn and n� 0�16 in equation (5). Its density is 1000 kg mÿ3.

For the solution of this problem it was decided to consider the viewpoint of an observer located on

the moving impeller. As explained by Tanguy et al.,5 the use of this Lagrangian frame of reference

makes the imposition of the boundary conditions much easier on a standard ®nite element mesh. In a

Figure 7. Velocity vectors and streamlines for Couette cylinder problem (h� 0�025)

Figure 8. Graph of angular velocity versus radius
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Eulerian frame of reference one would have to deal with moving boundary conditions so that the

problem would become unsteady in nature, calling for a costly remeshing of the computational

domain at each time step. However, the situation would not be so intricate with the proposed ®ctitious

domain method. As said before, moving boundaries could be tackled quite naturally by considering

time-dependent Lagrange multipliers and by allowing the control points to evolve over time

according to the impeller kinematics.

In the Lagrangian viewpoint the boundary conditions are as follows:

(a) a no-slip condition on the impeller v*(xi)� 0, 8i � 1; 2; . . . ;N

Figure 9. Graph of velocity L1 (O)-error versus mesh size h

Figure 10. Geometric description of helical ribbon mixer
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(b) the rotational speed (20 rev minÿ1) on the vessel walls

(c) free surface conditions (the surface is considered as ¯at).

As the frame of reference is non-Galilean (the observer is in rotation), the Navier±Stokes equations

must be complemented by the centrifugal and Coriolis forces. Finally, using this frame of reference,

the ¯uid ¯ow can be treated at steady state.

From a numerical standpoint, two meshes were considered: one for the standard ®nite element

method and one for the virtual ®nite element method, the latter being a mesh of the vessel only

(Figures 1 and 11 respectively). In this case two different surface representations of the HR impeller

corresponding to two sets of control points were used for the simulations. Moreover, for reasons

mentioned previously, a maximum of two control points were permitted in each tetrahedron of th.

Relevant numbers relating to these meshes are summarized in Table II.

The numerical simulations were performed on an IBM RISC=6000 590 workstation. A loading

strategy was used for the treatment of the non- linearities inherent to the power-law model. It consists

of carrying out a ®rst simulation at n� 1�00 and then using the result obtained as an initial guess for a

Figure 11. Finite element mesh of vessel

Table II. Characteristics of simulations for helical ribbon mixer problem

Number of
Number of Number of velocity Number of

Mesh elements nodes equations control points

Standard 47195 105383 299146 Ð
Fictitious 1 37481 84000 237487 1186
Fictitious 2 37481 84000 237487 1817
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second simulation at a lower value of n. This procedure is repeated until the target value (n� 0�16) is

reached. In this work each simulation required 5 h of CPU time with the standard ®nite element

method and 10 h with the virtual ®nite element method. In the latter case about 50 Uzawa iterations

were needed for convergence.

The results obtained with the ®ctitious domain method will now be compared with those obtained

experimentally and through a standard Galerkin ®nite element method.

Table III. Results for circulation time

Circulation time
Type of results (s)

Standard 77
Fictitious 1 152
Fictitious 2 86
Experimental 87 (� 8)

Figure 12. Pumping tubes in helical ribbon mixer

standard

1257 control points 2045 control points
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First, values of the circulation time are presented. Experimental measurements of circulation times

were obtained by using a thermal technique, as explained by Brito-De La Fuente.29 From a numerical

standpoint, values of the circulation time were obtained as in a previous paper,5 i.e. by integrating the

velocity of a neutrally buoyant particle so as to get a graph of its position with respect to time. In the

present case, particles were injected at the ¯uid surface. Results for the circulation time are presented

in Table III.

One may readily notice that the number of control points has a strong impact on the values of the

circulation time. While the values obtained with the standard mesh and the ®ner ®ctitious domain

mesh (®ctitious 2) are right on target, the same cannot be said about the coarser ®ctitious domain

mesh (®ctitious 1), whose computed value of the circulation time is way above what is measured

experimentally. Although this may seem rather surprising at ®rst sight, an explanation of this

phenomenon can be found in Figure 12, which characterizes the so-called pumping tubes for the three

meshes and within which the axial component of the velocity is negative. It appears that the volume

Figure 13. Contour plots of magnitude of velocity ®eld for helical ribbon mixer problem

standard

1257 control points 2045 control points
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of the tube obtained with the coarser ®ctitious domain mesh (®ctitious 1) is underestimated

(especially in the lower part) with respect to that predicted with the standard mesh. The relatively

small number of control points for this mesh means that the impeller is probably not as well

approximated and that it is somewhat porous. Consequently, it is not surprising that this particle takes

more time to come back to its starting point in this case.

Finally, Figure 13 exhibits contour plots of the magnitude of the velocity ®eld on a cross-section. It

clearly evidences the quality of the solutions obtained with the virtual ®nite element method.

7. CONCLUSIONS

The main objective of this paper was to present a new ®nite element method for the analysis of

incompressible ¯ow problems in enclosures containing internal (moving) parts. Belonging to the

class of ®ctitious domain methods, its main advantage lies in the fact that only a mesh that represents

the enclosure needs to be generated. The internal parts are rather accounted for by a set of kinematic

constraints that are formulated in the classical Navier±Stokes equations using an augmented

Lagrangian method. Simulations for the two-dimensional Couette cylinder problem and the three-

dimensional helical ribbon mixer problem showed that, provided that a suf®cient number of control

points are used, the virtual ®nite element method can be used as an advantageous alternative to the

standard Galerkin ®nite element method.
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